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Abstract A detailed and comprehensive study of the one-impurity multichannel Kondo model 
is presented. In the Limit of a large number of conduction electron channels k B I ,  the Iow- 
energy fined point is accessible to a renormalization group improved penurbative expansion 
in I l k .  This straightforward approach enables us to examine the scaling. thermodynamics 
and dynamical response functions in peat detail and make clear the following features: (i) 
the criticality of the fixed point. (ii) the universal non-integer degeneracy, and (iii) that the 
compensating spin cloud has a sp3tial extent of the order of one lattice spacing. 

1. Introduction 

Recently, the non-Fenni-liquid infrared fixed point of the multichannel Kondo model, which 
describes a system of k identical conduction bands interacting with an impurity spin S, has 
received considerable attention [ 1-18]. The interest is aroused by its potential application in 
the metallic glasses [ 1.5, 131, and heavy-fermion uranium alloys [24]  where more examples 
have been found with their low-temperature behaviour falling outside the usual Fermi liquid 
expectation [19,20]. It is further enhanced by the more interesting observation of non-Fermi- 
liquid behaviour in the normal state of the high-% cuprates [21,22] and its resemblance to 
the low-energy behaviour of the multichannel Kondo model [6,15]. 

Although this model is more than ten years old [23] and has been studied by various 
methods [9,14, 15,17,24-261, there is still room left for a simple interpretation of the 
physics of the low-energy fixed point, which is often said to be non-trivial. This task is 
easily achieved in the l i t  k >> 1, where the low-energy fixed point has a value of order 
I l k  for the coupling constant and is accessible to a renormalization group (RG) improved 
perturbative expansion in l/k. Some physical quantities difficult to calculate by the other 
methods are readily obtained by this perturbative approach and the results provide new 
insight into the fixed point. That the nature of the fixed point remains qualitatively the 
same when continuing k to small values as long as k > 2s has been demonstrated by the 
results of the Bethe ansatz or the conformal field method [9,25,26]. In this paper, we 
calculate a long list of physical quantities to leading or sub-leading order in I l k .  A simple 
physical picture can be sketched based on these results and the previous understanding. 

The underlying physics of the overscreened Kondo problem has been explained by 
Nozibres and Blandin 1231. For an antiferromagnetic Kondo interaction between the impurity 
spin and the conduction electrons, the impurity spin pulls in conduction electrons with 
opposite spin. This increases the spin-flip exchange which in tum enhances the attraction 
of the conduction electrons with opposite spins toward the impurity spin. The result of 
this cooperative enhancement of the Kondo interaction tends to pull in one conduction 
electron from each of the k channels to screen the impurity spin. However, unlike the case 
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k = 2S, the ground state with an infinitely strong effective Kondo coupling is unstable. 
Since k z 2 s .  the conduction electrons would overscreen the impurity spin, resulting in a 
composite object composed of k spin-aligned electrons antiferromagnetically bound with the 
impurity spin. As shown by Nozibes and Blandin [23], the residual interaction between this 
composite object with a net spin k / 2  - S and the conduction electrons is antifenomagnetic, 
and therefore will grow under renormalization. Additional conduction electrons must come 
in to screen this composite object. The process keeps going on, resulting in a critical system. 
It is important to realize that the system is only critical along the time axis. As short-time 
details are averaged out, the system approaches a universal limiting behaviour governed by 
the infrared fixed point. The impurity spin is asymptotically screened in the ground state, 
which is a spin singlet. However, the infrared fixed point can be reached only in an infinite 
system in which the energy levels form a continuum. In finite systems, the typical distance 
between discrete energy levels, of order I / L  for a system of linear dimension L,  cuts off the 
scaling toward the fixed point. The ground state of a finite system has a residual spin and is 
doubly degenerate. A common measure of the residual spin is as the temperature 
T + 0, where x ( T )  is the magnetic susceptibility. As we shall see, it is non-zero for a 
finite system. We shall also show that the entropy as given by the coefficient of the linear 
T term in the free energy is indeed ln(2S + 1) for a finite system. 

An intriguing feature of the multichannel Kondo model is that the entropy of an infinite 
system reduces to a smaller universal value [IO, 15,261 although the ground state is a spin 
singlet. If the entropy is still defined as the logarithm of the ground-state degeneracy, the 
ground state could have a universal non-integer degeneracy. Since the entropy is deduced 
by calculating the free energy at a small but finite temperature T which cuts off the scaling 
toward the fixed point, it is natural to relate the entropy to the effective residual spin at T. 
A necessary implication of this relation is that a tiny magnetic field will lift the degeneracy 
at T + 0, as we shall see later. 

Another interesting issue pertaining to aU kinds of Kondo problem, either overscreened 
or exactly screened, is the spatial size of the conduction electron screening cloud. ?his is 
a point underlying the resonant level nature of the Kondo problems. Considering the one- 
channel Kondo problem, it is well known that below the Kondo temperature TK the effective 
Kondo interaction enters the strong-coupling regime. The energy gain from screening the 
impurity spin is of order TK. If the screening cloud formed a localized bound state with the 
impurity spin, it would have a spatial spreading of UP/&(>> l / k F )  [27]. NMR experiments 
ruled out any conduction electron screening cloud bigger than one lattice spacing [28].  
Although the physical argument for the screening cloud to have a size of l/kp has been 
given [29,30],  here we calculate the Knight shift for the multichannel Kondo model and 
explicitly show that the only length scale is l / k F .  We also explain why the same conclusion 
can be extended to the exactly screened case of k = 1 .  

The paper is organized as follows. In section 2 the multichannel Hamiltonian and the 
Popov method are briefly recalled. In section 3, the general integral expression for the 
conduction electron self-energy to order 0 ( k - 4 )  is derived, which can serve as a future 
reference. In section 4, the integals in the self-energy are evaluated at T = 0 and the 
results are used to derive the RG equation and the running coupling constant. In section 5, 
the scaling solutions for the conduction electron scattering rate and resistivity are obtained. 
The free energy is calculated in section 6,  from which the specific heat and entropy are 
deduced. The magnetic susceptibility and field-dependent magnetization are calculated in 
section 7 for an equal-spin gyromagnetic ratio for the conduction electron and impurity 
spin. The dynamical susceptibility for the impurity spin is calculated in section 8 and the 
relaxation rate is deduced. The general case with different gyromagnetic ratios is considered 



On the multichannel Kondo model 4549 

in section 9. The Knight shift in the space surrounding the impurity spin is calculated in 
section 10. The last section is devoted to a discussion of related issues. Some of the results 
have been briefly reported in [ 151. Some details for the dynamical spin correlation functions 
are included in appendix B. 

2. Popov technique 

Without losing generality, we consider the local impurity to be a spin S = i. The 
multichannel Kondo Hamiltonian in the magnetic field is 

where S is a spin-1/2 operator, upv are the Pauli mahices, J is the Kondo interaction 
strength and N is the number of lattice sites. We have set the conduction electron 
gyromagnetic ratio and Bohr magneton equal to one so that the magnetic field h has 
dimensions of energy. We have introduced a parameter p~ to account for possible 
differences between the conduction electron and impurity spin: p s  is equal to the 
gyromagnetic ratio of the impurity spin divided by that of the conduction electron. We 
shall adopt the usual cut-off scheme for the conduction electron band: -D < ek < D, with 
a constant density of states p per spin per channel. 

Representing the impurity spin in terms of pseudofermions 

Popov made the observation that the Kondo Hamiltonian without imposing constraints on 
the pseudofermions is disconnected in the pseudofermion charge sectors, i.e. 

2 = Tre-@" = Z, + 21 + Z, = Tr6(2f)e-OH + TrS(2, - 1)e-@" + TrS(h, - 2)e-BM. 

Among these three separate contributions, only 21 from the subspace 

ti, = c f,ifo = 1 
m=* 

is physical. Popov's technique 1311 is to add an imaginary chemical potential, io& = 
in/(2,9), to the pseudofermions so that 4 + Z, = 0. Using this trick, the partition function 
in the path integral formalism can be represented as 

There is no additional constraint. The standard perturbation method then follows from this 
path integral representation. The impurities are assumed to be randomly distributed in space. 
The averaging over the impurity distribution is done according to the standard recipe, as 
in the case of the spinless impurities [32,33], and we only keep contributions linear in the 
impurity density ni. The Feynman rules for constructing diagrams are listed in appendix A. 
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Figure 1. Feynman diagrams for the conduction electron self-energy The arrows on the 
propagaton are marked only when they make a difference. 

3. Conduction electron self-energy 

The first thing we shall calculate is the conduction electron self-energy in the absence of the 
external magnetic field. Up to order J 4 ,  J'k and J6k2, the relevant diagrams are given in 
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figure 1. The two subscripts in each term of the self-energy expansion indicate the powers 
of J and k respectively. Since each conduction electron loop must contain at least two 
interacting vetices, one can immediately convince oneself that all contributions up to order 
k4 have been included in figure 1 when J p  is counted as l/k. After lengthy algebra, the 
final results at finite temperature are 

x(iw., T) = EGO) + x(3.0) + x(4.1) + x(4.0) + c(5.l)  + c(6.2) (4) 

2 
io, - ES + 63 - c4 + 

cl - tz + tj - c4 
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4. Renormalization group equation and solution 

Under the analytic continuation io, + o + io+, C(o + iO+) = C'(o) + iC"(o). The 
imaginary part of the self-energy C"(o) is proportional to the total scattering rate of the 
conduction electron of energy o. At T = 0, the integrations in the imaginary part of the 
self-energy (5x10)  can be carried out and we obtain 

C"(w, D , g )  =-g (Po+ P I g l n Z +  Pzg'kInZf P3g2k+P4g2hZo"+ Psg3klnZZ 
3nni 
1 6 ~  

+ P&klnG+ S g 3 k  + P ~ g 4 k Z l n Z Z  + P9g4k21nZ+ P10g4kZ) (11) 

where g = J p  and = w/D.  Since we are only interested in the energy range w < D, 
we have neglected terms of powers of Z in (11). All coefficients PO to Plo are known: 
Po = 1, PI = -2, Pz = 1, P3 = In2 - 1, P4 = 3, P5 = -- l. P6 = 5 - 31112, PS = I, 
P9 = 2 In 2 - $. The coefficients PT and P I ~  are not needed for deriving the RC equation 
to sub-leading order. However, they can be found from (9) and (10). Since we expect the 
fixed point g* to be of order I l k  [23], our result (11) includes all conhibutions up to order 
#(k4) .  

Since the dimensionless scattering rate deduced from (1 I) must be invariant under Rc 
transformation, we obtain the following equation: 

The beta function, B(g) ,  of the Kondo interaction g can be deduced from (11) using the 
standard RC technique [34]. Equation (12) can be regarded as an equation that generates 
logarithmic series with fixed g: 

a 
ag 

pC"(o, D, g) = +(g) - / d(ln D)pC"((o, D,  g) +constant. (13) 

Substituting (11) into (13). the integration over In D can be carried out easily. Expressing 
p ( s )  to sub-leading order as 

(14) 

and substituting it into (13), we obtain the following equations for the coefficients K I  to K S  
from (13) by equating order by order the coefficients of the polynomials on the left- and 
right-hand sides: 

P ( g )  = g2(Ki + Kzgk + K3g + K.+g2k + Ksg'k') 

K3 = 0 



On the multichannel KO& model 4553 

There are three consistency equations 

P4 = f P 1 K ]  P s  = 2 q K ]  f f p i K 2  fs = 2 P z K z  

which are all satisfied. 
The beta function obtained can be written explicitly as 

(20) 

The intermediate-coupling fixed point g*, determined by p(g*) = 0, and the slope of the 
p(g) at the fixed point, are then easily found to be 

p(g) = -g2 + fkg3 + d k ( l +  hZ)g4 - ak 1 2 5  g . 

We find indeed g' - l j k ,  thus allowing a reliable expansion in the k + 03 limit. The slope 
A that determines the critical exponent is universal. The perturbative result (22) agrees with 
the conformal field result 2 / (k  + 2)  [9] up to sub-leading order in the l j k  expansion. 

The running coupling constant gR(0) is determined by the differential equation 

with the initial condition gR(o = D) = g. With our perturbative p(g)  of (20), the solution 
of (23) covering the full range of energy scale from o << TK to o >> TK can be obtained. 
We rewrite (23) in the integral form 

This leads to the full solution 

where TK = Dgk/2exp(-l/g). At o < TK, it has an asymptotic form of 

For an initial condition of weak coupling, g + 0 and D -+ 03, the constant < = 
(g*)'ikA/2e"/~'. From (24). it is interesting to note that the running coupling constant 
has a power law behaviour not only at low energy o < TK but also at high energy o > TK, 
underlying the critical nature of the system. 
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5. Scattering rate and resistivity 

To obtain the scaling solution for the conduction electron scattering rate PE:", we can use 
the RG invariance 

(26) 

Choosing D' = w,  the logarithmic terms in p C " ( o ,  w ,  gR(w)) of (1 1) drop out and the 
scaling form for (1 1) is 

PE''(W9 D ,  gR(D) = g) = P E " ( 0 ,  D', gR(D')). 

pC"(o, D, g) = 16[gi(o) 3nni - (1 - In2)kg4 w 3nni [l -Ao($)*] (27) 
R( 4(k + 2)2 

where Ao = k< [ 1 - (4 - 6 In 2 ) / k ] .  A similar RG procedure will be performed repeatedly 
later. Note that instead of a Lorentzian frequency dependence in the exactly screened Kondo 
problem, PE" - TZ/(w2 + Tz), the scattering rate (27) has a cusp at w = 0. At non-zero 
temperatures, the cusp is expected to be smoothed out. 

In order to calculate the resistivity, we need the temperature- and frequency-dependent 
conduction electron relaxation time. Identifying the transport relaxation time due to the 
Kondo exchange as rer(w. T) = 1/[2E"(w, T)] since there is only s-wave scattering [32],  
the total scattering rate is l/7(0, T) = 1/70 + l/&(o, T), where is the ordinary 
relaxation time in the absence of the Kondo interaction. The ordinary scattering I/ro could 
arise from spinless impurities or defects which are assumed to be located at different lattice 
sites and uncorrelated with the impurity spins. A low impurity spin density is assumed, 
ni < 1, such that 70 < rex. The total relaxation time is substituted into the conductivity 
expression [33] 

o(T)  = 
me 

with e, me and n, denoting the conduction electron charge, mass and density respectively. 
With our perturbative expression for X"(w, T )  to order k-3 from ( 5 H 7 ) ,  we find for the 
resistivity due to Kondo scattering 

nig2 1 + O(g, g2k) + O(g, g2k) x In - 31r me ( 
8 n,e2p 

- 

where 

Some difficult integrals have to be evaluated to obtain the sub-leading terms in (29). So we 
limit ourselves to the leading order. Performing the same RG procedure as (27), we obtain 
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where pio) = 4 r / e 2 k ~  is the resistivity in the unitary limit and kp denotes the Fermi 
wavevector which is related to the conduction electron density of states through p = 
kFm,/2n2. Thc T = 0 value of the resistivity and the exponent A have been reported [I11 
and an exact expression for the resistivi~ for k = 2 up to a constant factor < has been derived 
recently [16]. As in the exactly screened Kondo problem, the corresponding resistivity 
decreases upon increasing temperature, 

An important point is that, even at T = 0, there is still inelastic scattering. In 
other words, the impurity spin together with its asymptotical screening cloud (see the 
magnetization section) cannot be regarded as inert. Let us see how the assumption of 
elastic scattering only at T = 0 would run into trouble. Following Nozisres [19], the total 
resistivity can be divided into elastic and inelastic parts: 

Sp, = sp:‘ + cos(240)Sp~ (32) 

where +O is the scattering phase shift at the Fermi energy. This separation is valid at least for 
weak inelastic scattering, which would indeed be the case at low T if only elastic scattering 
were present at T = 0. For elastic scattering, we could identify 

which would lead to 

r 
40-7;. (33) 

The resistivity due to the elastic scattering can be calculated by using (27) as the scattering 
rate. To leading order 

dw 
Gpl’(T) = (34) 

Substituting (31), (33) and (34) into (32). we would obtain the inelastic contribution to the 
resistivity, Sp: < 0, which certainly is impossible. This contradiction indicates that there 
is both elastic and inelastic scattering at T = 0. For the two-channel case, k = 2, it has 
been suggested that there is actually only inelastic scattering 1161. 

n 

Figure 2. Diagrams for ihe free energy. The full curve 
represents the bare conduction electron propagator. The 
discs encircling the selfenergy symbols stand for the 
conduction electmn selfenergies. 

+ -  
3 
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6. Specfic heat and entropy 

To calculate the free energy, we can use the linked cluster theorem: 

where Fo is the free energy of the non-interacting Fermj sea and a decoupled free impurity 
spin. The diagrams for the first three U, are drawn in figure 2. The results, after completing 
the Matsubara frequency summations, are 

U4 = ?g4kz 1 dcl d e z d e d ~  f(-El)f(EZ)f(63)f(-E4) 64 

)]. (38) 

As noted by Kondo L3.51, it is quite delicate to extract the linear-T terms in (37) and (38). 
Here we follow the method used hy Kondo and present the calculations only for the integrals 
not calculated in [35]. 

The calculation of U2 is simple and straightforward. The result is a constant plus T 2  
corrections. To calculate U,, we define a new integral 13: 

I - &Z-LI+f3-6<) 

.[ (€1 - d ( 6 3  I (  - 64) 61 - €2 - €3 + €4 

e#(*$-Cl) - &W-€d 

El  - €2 f €3 - €4 + 

where we have introduced the notation 

The S + 0 limit is taken after the integrations are completed. Kondo [35] showed 
3ni 3 

U3 = -g 8 k(Z3 - in+) (39) 
so we only sketch the calculation for 13: 

The first integral has no linear-T contribution which can be directly checked. Thus, up to 
a constant term, we have 
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Combining the above result with (39). we obtain 

4557 

U3 = constant - $nirr2g3kT. (40) 

Next we turn to U,, which is calculated in a similar way. Defining a new function 

It can be further verified that 4 has no contribution linear in T . Therefore 

(42) 
3n2q 4 U4 = constant + - g k T. 

32 
Substituting (40) and (42) into (35) and setting ni = 1 for simplicity, we obtain the free 
energy shift due to the presence of the impurity spin: 

(43) f imp(T)  = -EO - T In2 + irr2T(kg3 - ik2g4) + U(g4k) 

where Eo is the ground-state energy. 
Since the free energy shift is RG invariant up to an additive constant, we obtain the 

scaling solution for the free energy shift at T -+ 0 after canying out the standard RG 
procedure 

fimp(T) -Eh - T 1112 + $n2T(kg;(T) - $k2gi(T)) 

where E& is in general different from the EO of (43). The impurity specific heat is 

The critical exponent, (Y = ZA, agrees with the previous result [9,25]. The impurity entropy 
is reduced to a universal value [IO1 

Actually, the correction to the entropy occurs only when one first takes the thermodynamic 
limit N -+ 00 and then the limit T -+ 0. For a finite system, the integrals in U3 and 
U4 should be replaced by discrete momentum summations over the Brillouin zone, which 
will not give rise to contributions linear in T to the free energy, and thus no correction 
to the bare ln2  term of the entropy. Therefore, the finite system always remains doubly 
degenerate. 
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+ . . . . . .  Figure 3. Diagrams for L e  free energy in the 
magnetic field. 

7. Field-dependent magnetization 

A natural question following the finite entropy is whether or not there is a corresponding 
residual impurity spin. To answer this question we calculate the field-dependent impurity 
magnetization defined as the total magnetization of the system subtracting the free Fermi 
sea contribution. In the presence of an external magnetic field, the leading-order diagrams 
to the free energy are shown in figure 3. This is an infinite series. The diagram with I 
vertices has a contribution 

The momentum summation over the conduction band is readily carried out: 

D U ' c c .  = g LD dr[f( t  -F h )  - f ( r  - h)]  = -2gh 
Nk' k,w* 10. - Ek - a h  

where again f ( ~ )  is the Fermi-Dirac function. Summing up all the diagrams in figure 3 
and using (48). the free energy shift due to the impurity spin is 

Introducing the primitive of f ( z ) :  du(z)/dz = f(z), the series can be summed: 

The corresponding magnetization is 

Adding to the above result the bare magnetization of the impurity spin. which just cancels 
the second term of the above expression, we finally obtain 
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This is the leadingorder temperature- and field-dependent magnetization. 

ratio. Expression (49) has the form characteristic of a reduced free spin: 
In this section, we shall mainly consider the case ps = 1, i.e. an equal gyromagnetic 

M S@tanh(&h/T) = 1 - kg /2  = (g* - g)k /2 .  

The fact that Sd + 0 following a power law, as seen from (U). implies that the impurity 
spin is completely screened only for the infinite system. A finite system of size L behaves 
as if there is a partially screened spin Sefi - L-* since there is a minimum energy unit 
1/L to cut off the scaling. The asymptotic screening also suggests that the ground-state 
degeneracy will be lifted by any small magnetic field at T = 0. Using the Maxwell relation 
aS/ah = a M / a T ,  the leading-order field-dependent entropy is 

Siw(T, h )  = In 2 + &, a M g  h') 

dx- - t o  for T + O  h # 0 .  (50) cosh'x 
= In2 - 

We expect that this is m e  to any order. In particular, the entropy change, 7r2/(2kz), in the 
next order (46) will be removed by the magnetic field. 

From (49). we obtain the low-temperature magnetic susceptibility and its scaling 
form [9,25]: 

indicating that the fixed point is a spin singlet since S& - Txiw(T)  - TzA + 0 as T + 0. 
The spin is quenched very slowly compared with S$ - T in the exactly screened case. Also 
from (49), we determine the field dependence of the zero-temperature magnetization [9]:  

kgrc(h) 
2 

M ( T  = 0, h)  = 1 - $kg = 1 - - 'ZK +k<(h/TK)'. 

This shows that the spin operator has the scaling dimension A.  
Using the well known results for the bulk specific heat and magnetic susceptibility, 

cb"k = 2k7r2Tp/3 and Xbulk = 2kp respectively [36], the leading-order Wilson ratio is 
determined from (45) and (51): 

in agreement with the conformal field result [9 ] .  The Wilson ratio is universal because the. 
only parameter having a possible dependence on the cut-off scheme is <, which cancels out 

For ps # 1, the extemal magnetic field couples to an unconserved spin operator. The 
magnetization will acquire an anomalous dimension and we shall discuss it in detail in 
section 9. 
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Figure 4. Dia- for Lhree dynamical spin correlation Functions 

Figure 5. Analytic continuation in the complex 
hquency plane carried out in the region outside a disc 
of radius of order 2.  

8. Dynamical susceptibility 

For the one-channel Kondo problem, it is well known that the impurity spin flips at a typical 
rate of the Kondo temperature TK. At T c TK, the impurity spin is effectively inert leading 
to a fixed point of local Fermi-liquid type described by a phase shift. To understand the 
multichannel case, we calculate the dynamical spin susceptibility. As we shall see, the 
typical spin flipping rate is given by the temperature. 

We proceed as usual by first calculating the Matsubara spin-spin correlation function: 

where U. = 2nx/p. To sub-leading order, the diagrams are shown in figure 4. The result 
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of the calculation of these diagrams is 

xf(iwn) = &,,ffi[l - g2k(lnfiD - In2 + I,,)] - $g2kK(iu,J (55) 

where lo = J~dx[tanh(x/2)/x - 1/(1 +n)] Y 0.125 and 

(56) 
jz - - -- (1 - 6.,0) + O(D-9. 

IU.1 

To understand the result just derived, let us consider x f ( z )  in the complex frequency plane 
iu, -+ z outside a disc of radius of order T (figure 5). Knowing its values at a set of discrete 
points on the imaginary axis, z = iw,, is enough to give a unique analytic continuation: 

where sgn(Imz) means taking the sign of the imaginary part of z. When z approaches the 
real axis, z = w + is, xf(w + is) = x;(o) + isgn(S)x;(w), and we find 

This is valid in the whole plane outside a disc of radius of order T. There is no energy scale 
to cut off l/w dependence. Certainly for w << T ,  this dependence should be flattened out as 
seen from the v, = 0 part of (55). If we recall that in the exactly screened Kondo problem 
(k = ZS), x;(o)/w - 1/(w2 + T i ) ,  we see that x;'(o) - l/w, similar to (58) only when 
w > TK. Since $'(o)/o is the spectral distribution function of the susceptibility, the system 
gives sizable magnetic response only when all the contributions up to the energy scale TK 
are included. In other words, the impurity spin is effectively quenched on a timescale longer 
than l / T +  In the multichannel case, the role of TK is played by the temperature T! The 
impurity is only marginally quenched since the timescale is 1/T. 

In the other limit, w << T, carrying out the analytic continuation as in [15], we find 

Note that if ps >> 1, the coupling of the nuclear magnetic moment to the impurity spin 
dominates and (59) is proportional to the NMR relaxation rate l / q T .  In the limit k >> 1, a 
local probe basically sees a nearly free impurity spin. 

In the two-channel case, numerical work in the non-crossing approximation [7] and 
the solution at a special Toulouse point [I41 have found ,y;(w) - tanh(w/2T)/(wZ + Ti).  
The tanh(w/2T) term has also been produced by the conformal field theory method, and 
is a property of the fixed point itself. It would be interesting to see if the remaining 
Lorentzian form with width TK can be reproduced from the perturbation of the leading 
irrelevant operator in the exact conformal field theory calculations. For k w 2, we do not 
expect a Lorentzian form with finite width TK for the following reason. The multiplicative 
renormalization factor (Zz of (68) at p s  = CO, see the next section) for x j  will bring in an 
anomalous dimension wzA to (58). We see that x;(w) - wZA-l for T c w < TK. Since 
2A = 4 / ( k  + 2) < 1, this frequency dependence cannot be reconciled with a Lorentzian 
form with a finite width. 
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9. Magnetic susceptibility for p~ # 1 

As well as the timeordered impurity spin-spin Correlation function studied in the last 
section, we can also define 

The Feynman diagrams for these two correlation functions are shown in figure 4 and 
calculated in appendiw B. 

When the impurity spin has a different gyromagnetic ratio from the conduction electrons, 
a uniform external magnetic field couples to an unconserved spin operator S, = S.(q = 
0) + p s s .  The magnetic susceptibility is then only RG invariant up to a multiplicative 
renormalization factor 

Ximp(T9 g,  D) = [Zh(g .  g~(D'))]~Ximp(T, gR(D'), D') (63) 

where z h  is the multiplicative renormalization factor for the operator sh and we recall 
g R ( D )  = g. If ps = 1 ,  then zh = 1. The RG equation for x is 

The perturbative result for x to the sub-leading order can be found from the results of three 
dynamical correlation functions calculated in the last section and appendix B: 

Ximp(T, g. D) = $[x& = 0, U, = 0) + 2/LSXfS(4 = 0, U" = 0) + p:x/(u. = O)] 
= B{(ps - +gk)*[I - g*k(In@D - In2 + lo)]  - g2k(ps - f g k )  11121. (66) 

The leading term of yh(g) can be obtained from (66) using the same method of section 4 

Its value at the fixed point, yh(g*), gives the anomalous dimension of the operator sh. 
The anomalous dimensions for the operators S and S,(q = 0) are the limiting values at 
ps + 00 and ps -+ 0 respectively. 

To obtain the scaling solution, we first find the multiplicative renormalization factor 
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Setting D' = T in (63) and (68), we obtain the leading-order susceptibility (since we only 
have the leading-order Zh): 

This is the main result of this section: the static magnetic response is the same, up to a 
constant factor, whether or not the conduction electrons and the impurity spin have the 
same gyromagnetic ratio. I believe that this conclusion remains hue for all overscreened 
Kondo problems, and even for the exactly screened case of k = 1. If the initial starting 
point belongs to the weak coupling g + 0 

ximp(T. g. D) = p;[ximp(T, g, D)Ip8=1. (70) 

This is the well known result for all kinds of Kondo problem: the contribution to the 
magnetization from the conduction electrons is suppressed by a factor of TK/D compared 
with that of the impurity spin 1371. Extending the treatment in this section to the field- 
dependent magnetization and dynamical susceptibilities is straightforward. 

10. Knight shift 

The Knight shift gives a direct measurement of the spatial structure of the conduction 
electron screening cloud. Considering an impurity spin sitting at the origin and a uniform 
magnetic field h being applied to the system, the Knight shift measures the magnetization 
in the space surrounding the impurity spin: 

We implicitly assume that the free Fermi sea contribution to M ( r )  has been subtracted. The 
result for the Knight shift is contained in the two dynamical correlation functions defined 
in the last section: 

x(q) = $xe(q, iv. = 0) + cLsne(q. iv. = 0)1. (72) 

Using the results of appendix B, we find to sub-leading order in I l k  

- 
ck - ck ' tq  

where 1, N 0.125, is given in the last section. We have included proper normalization 
factors in the definitions of ilo(q) and lT1 (q) such that llo(q = 0) = 1 and (q = 0) = 1. 
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Note that the Fourier transform of no(q) has the well known Friedel oscillation form in 
space [38]. The Fourier transform of nt(q) should give similar spatial variation. From 
the rotational symmetry, x(q) can only depend on 4 = 14). Furthermore, it is not difficult 
to see that the two dimensionless functions no and nl are only functions of q/kF. Their 
Fourier transforms only depend on kpr,  where r is the distance to the impurity spin. 

The important feature of (73) is its logarithmic singularity in the temperature T, no 
matter what value is taken by q. One can also explicitly verify that x(q)  satisfies the RG 
equation: 

where p(g) and yh(g)  are given by (20) and (67) respectively. As can be seen from (73). 
the actual functional form of x(q)  is x(q,  T, D.g) = ?(q/kF, T/D,g)/T where 7 is a 
dimensionless function. Nevertheless, the simplified notation of the functional dependence 
of x (q) in (76) is harmless. The scaling solution can be found in a similar way to the last 
section: 

Using the results for Z, and gR, we obtain to leading ordei 

where ximp(T) is the uniform susceptibility found in section 7. A knowledge of zh to 
sub-leading order could extend (78) to the next order. When Fourier transforming (78) 
to real space, M(T) is a function of kFT. So the only length scale is I/kF. Naively, the 
appearance of a new energy scale TK would imply a new length scale vF/TK. Thinking over 
why it did not appear, we notice that a new length scale UF/TK >> l/kF would appear only 
if the logarithmic singularity were cut off by uFq when uFq > T. This does not happen! 
For kF > q >> TK/up, we essentially look at the conduction electron spin polarization 
only a few lattice spacings away from the impurity spin. If there were a large screening 
cloud with a length scale UF/TK, the screening of the impurity spin would not he complete 
inside the screening cloud. This would imply that there is no Kondo effect for q > TK/UF 
even if T/TK -P 0. On the contrary, we always find the In T singularity which implies 
Kondo screening. The length scale of the screening cloud is I/kF. This tells us that the 
multichannel system is critical only in the time direction, not in the space direction. 

Most generally, ~ ( r )  of (71) contains a non-oscillating part and an eiZkfr oscillating part 
for which the q dependences of x (q) near q - 0 and q - 2 k ~  are responsible. The spatial 
variation of the non-oscillating part is simple because nO(q). n1(q) and therefore x ( q )  all 
have a well behaved q dependence near q ,.. 0. and we can extend the above conclusion of 
only one length scale l/kF to all kinds of Kondo problem. In the k = 1 case, the effective 
Kondo interaction Rows to strong coupling at low energy. From the renormalization goup 
point of view, it means that summing up leading or sub-leading logarithmic series is no 
longer enough to reach an energy scale below the Kondo temperature. But organizing the 
perturbative expansion in the coupling constant g into successive logarithmic series (the first 
term of each series has successively higher powers in g) according to the renormalization 
group is still possible. This is equivalent to writing p(g) as an expansion in g. The 
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Occurrence of a strong-coupling fixed point means that we need all terms in the expansion 
of p(g) to describe the low-energy behaviour. Supposing we could find all of them, we 
would have a correct low-energy theory by summing up all the infinite number of terms. 
The fact is that the infrared singularity is not cut off by uFq. In other words, the logarithmic 
series are in InT but not in lnq. This fact does not change merely because we have to 
include high-order logarithmic series. The mathematical expression of this fact is the scaling 
equation (76) whose validity is not expected to be affected. The difference between all kinds 
of Kondo problem, either overscreened. exactly screened or underscreened, amounts to the 
different behaviour of gR(T) and Zh. In the scaling equation (76), the parameter 4 / k ~  is 
just an idle spectator of the screening process. The right-hand side of (77) only depends on 
q/kF, T/TK and possibly the initial coupling constant due to Zh. We see that VF/TK will 
never have the chance to appear as a length scale. Certainly, if the renormalization of an 
effective interaction to strong coupling leads to a phase transition, the validity of the scaling 
equation (76) may be affected by passing the transition. However, the impurity problem 
has a dimension O f  1, prohibiting a phase transition (a first-order transition is possible, but 
we know it is not there). Thus, our calculation provides an explicit analytical demonstration 
that the screening cloud has a spatial size of order  ilk^, and agrees with the well known 
experimental result [28]. 

11. Discussion 

We have carried out a comprehensive study on the non-Fermi-liquid fixed point of the 
multichannel Kondo model emphasizing several intriguing aspects. As the actual realization 
of this model in heavyfermion and metallic glassy systems is still an open question, a 
thorough understanding of the model should be very helpful in devising new experimental 
tests and making a comparison with experimental results. Part of the driving force behind the 
recent resurgence of interest is the resemblance of its low-energy behaviour to the normal- 
state properties of high-% cuprates. This similarity has been further exploited recently [6] 
arguing that a situation similar to the two-channel Kondo model is realized in the copper- 
oxide plane. 

An interesting follow-up subject is to study the possibility of the evolution of the local 
non-Fermi-liquid fixed point into a coherent lattice one in an overscreened Kondo lattice, 
especially in two or three dimensions. The first step is to study the two-channel4wo- 
impurity problem. This has been carried out using the numerical renormalization group 
method 1391. The one-impurity fixed point is found to be unstable against developing 
correlations between the impurity spins. This is expected in view of the asymptotical 
screening of the impurity spin and the residual entropy. One artificial way to suppress 
magnetic correlations between impurity spins is to go to infinite dimensions. Unfortunately, 
the presence of finite degeneracy on each site prevents development of true coherence. In 
any realistic situation, non-trivial magnetic correlations must intervene to lift the residual 
degeneracy of the impurity fixed point. If one wishes to follow the successful route of the 
heavy-fermion theory from impurity to lattice once again, in the curcent intensive search 
of non-Fermi-liquid models to describe the normal state of high-T, cuprates, only non- 
degenerate fixed points of an impurity model have the chance to be a successful starting 
point. Developments along this direction in the search of a promising impurity model have 
been reported recently [40]. It is worthwhile mentioning that a quantum critical system with 
a Fermi surface has a true coherent non-Fenni-liquid infrared fixed point in high dimensions. 
An example is an electron gas coupled to a transverse gauge field, where a self-consistent 
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solution of the infrared fixed point has been derived 1411. It is interesting to note that this 
system is critical at T = 0 in 2D and 3D but without developing long-range order. 
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Appendix A. Feyman rules 

To be self-contained, we list the rules for constructing Feynman diagrams in the presence 
of an external magnetic field. These rules also define our convention. 

(i) For the conhibutions of nth order in the Kondo interaction, U(J"), draw all 

(ii) For each conduction electron propagator, draw a solid line: 
topologically distinct diagrams with n vertices. 

io,, - €k - ph ~ 

A-", ~ 

There is a summation over each momentum k of the internal conduction electron 
propagator. For each pseudofemion propagator, draw a broken h e :  

(iii) Each vertex is associated with a factor: 

(iv) Each independent internal frequency is summed over. 
(v) Each conduction electron loop contributes a factor -k and each pseudofermion loop 

contributes a factor -1. 
(vi) For a diagram of order J" ,  there is a numerical factor: (number of different 

connections)/n!. This Combinatorial factor will be given explicitly in the figures of this 
paper for the diagrams we calculate. 
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Appendix B. Dynamical spin-spin correlation functions 

Thrcc dynamical correlation functions have been defined in sections 8 and 9. To order 
U(1) + U ( l / k ) ,  their diagrams are shown in figure 4. Each diagram contains two external 
vertices where the external spin operators reside. They are represented by two open ends at 
the left and right sides. The external vertex at each end is joined by two propagators. If the 
spin indices of these two propagators are UI  and U*, the corresponding vertex is associated 
with a vector of spin-; matrices s ~ ~ ~ , .  The two vectors of matrices from the two external 
vertices at the two ends form a scalar products,,,, .e,,,,,,. In x.. only one of the two external 
vertices has the two joining conduction electron propagators differing in their momenta by 
q. At the other external vertex, the incoming and outgoing conduction electron momenta 
are the same. 

The result for xf(iu.) is given by (55). The results for the other two are 

xr.(q,ivn) = -&,oggkBIno(q)[l - & ( l n p ~  -1n2+10)1+gin~nl(q)]  

x&. iv.) = -&.o$gkx&. ivd + &,o---g k B W q )  - (1 - G n . O ) x f e ( q .  iv.) 

+ (1 - &,o)x&& iv.) (B1) 

(B2) 
31112 

16 

where no and i71 are defined in section 10, and for U, # 0 

xfE(qI iv.) = &'k[gknO(q)K(iv,) + 2 K ( q ,  iu,) - 2L(q, i ~ l  

Note that K ( q  = 0, iu.) = K(iw,) is a generalization of K(iu,) defined by (56) to finite 
q. In the expressions for xfe and xe, we have dropped contributions of order 1 / D  to the 
w. = 0 components comparing to the contributions of order p we kept. 
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